MOD p DECOMPOSITIONS OF THE LOOP SPACES OF COMPACT SYMMETRIC SPACES
نویسنده
چکیده
We give p-local homotopy decompositions of the loop spaces of compact, simplyconnected symmetric spaces for quasi-regular primes. The factors are spheres, sphere bundles over spheres, and their loop spaces. As an application, upper bounds for the homotopy exponents are determined.
منابع مشابه
HOMOLOGY DECOMPOSITIONS FOR p-COMPACT GROUPS
We construct a homotopy theoretic setup for homology decompositions of classifying spaces of p-compact groups. This setup is then used to obtain a subgroup decomposition for p-compact groups which generalizes the subgroup decomposition with respect to p-stubborn subgroups for a compact Lie group constructed by Jackowski, McClure and Oliver. Homology decompositions are among the most useful tool...
متن کاملNew Finite Loop Space 3 adic
We construct a space BDI(4) whose mod 2 cohomology ring is the ring of rank 4 mod 2 Dickson invariants. The loop space on BDI(4) is the rst example of an exotic nite loop space at 2. We conjecture that it is also the last one. From the point of view of homotopy theory a compact Lie group G has the following remarkable combination of properties: (1) G can be given the structure of a nite CW-comp...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014